Determining the mass of a double star

Herbert E. Müller, January 2017, herbert-mueller.info

Let A and B be the two components of a binary star, e.g. α Centauri A&B, see fig. 1 below. The vector \(\vec{AB} \) moves on an ellipse in space. If one can measure the period of revolution \(T \), the distance \(d \) from Earth, and the largest angular diameter \(2a \) of the upright ellipse, then one can afterwards calculate the overall mass \(M \) of the binary star, using Keplers 3rd law \(GM=(2\pi/T)^2(da)^3 \). If \(T \) is measured in years and \(d \) is measured in AU (= ly+63240), then \(M=(da)^3/T^2 \) is the binary star's mass in units of our sun's mass.

The problem is: the ellipse is usually not at right angles to the line of sight, rather it is tilted by an angle called inclination \(i \), and all angular diameters (except the one on the axis of tilt) appear shortened by perspective. The tilted ellipse has apparent main axes \(\hat{a} \) and \(\hat{b} \), and the projected focal point is located at coordinates \((f_x,f_y) \) with respect to the apparent main axes. (α Centauri: \(T = 79.9 \) a, \(d = 4.27 \) ly, \(\hat{a} = 16.02'' \), \(\hat{b} = 3.07'' \), \(f_x = +5.67'' \), \(f_y = +1.13'' \).)

The following is about retrieving the true main axes \(a \) and \(b \) from these observations.

We choose the \(x,y,z \)-coordinate system with the origin \(O \) in the center of the ellipse, and the \(z \)-axis along the line of sight from Earth to this center. The star A is located in the focal point \(F \) of the ellipse, and the star B is moving on the ellipse. From now on we use \(F: (f_x,f_y,f_z) \) for the focal point (the star A), \(P: (x,y,z) \) for the moving ellipse point (the star B), and \(A: (a_x,a_y,a_z) \) and \(B: (b_x,b_y,b_z) \) for the endpoints of the two main axes. The focal vector is \(\vec{OF}=\vec{r} \), the ellipse vector is \(\vec{OP}\equiv\vec{OF}+\vec{FP}=\vec{r} \), and the main axes vectors are \(\vec{OA}=\hat{a} \) and \(\vec{OB}=\hat{b} \).

The projection of an ellipse has some interesting features:

1. The \(x,y \)-projection of a spatial ellipse \(E \) centered at \(O \) is an ellipse \(\tilde{E} \) centered at \(O \).
2. The projections of \(F, A \) and \(B \) do not coincide with \(\tilde{F}, \tilde{A} \) and \(\tilde{B} \) (the focal point and main axes end points of \(\tilde{E} \)) . The projections of \(\vec{OA} \) and \(\vec{OB} \) are conjugated axes of \(\tilde{E} \).
3. Keplers 2nd law of constant area velocity \(\vec{FP}\times d\vec{FP}/dt \) is also valid for the projected area.

Photos of the double star taken at regular time intervals give us \(x,y \)-projections of the vector \(\vec{FP} \), allowing us to construct the projected ellipse, see fig. 2 below. Because of point 3, the time schedule of the point \(P \) is not important except for the period \(T \), and we parametrise the ellipse with \(\tilde{r}=\tilde{a}\cos(t)+\tilde{b}\sin(t) \); here \(t \) is NOT time, but simply a parameter in \([0,2\pi]\).

Problem:

Given the projected ellipse \(\tilde{E} \), i.e. the apparent main axes \(\vec{OA} \) and \(\vec{OB} \) with lengths \(\hat{a} \) and \(\hat{b} \), and the projected (true) focal vector \((f_x,f_y) \), determine the spatial ellipse \(E \), i.e. its main axes \(\vec{OA}=\hat{a} \) and \(\vec{OB}=\hat{b} \), the missing focal coordinate \(f_z \), and the rotation with axis \(d \) and angle \(i \) (inclination) that turns the ellipse upright.
Solution:

We orient the x,y-coordinate axes along the apparent main axes; the coordinates of \tilde{A} and \tilde{B} are $(\tilde{a},0)$ and $(0,\tilde{b})$. The true main axes \tilde{a} and \tilde{b} are obtained by rotation. The 3 points O, F, A are in line, and the eccentricity of the spatial ellipse is $e=\mathcal{O}F/\mathcal{O}A$.

$$\tilde{a} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} = \begin{pmatrix} \tilde{a} \\ 0 \\ \alpha \end{pmatrix} \cos(\tau)+\begin{pmatrix} 0 \\ \tilde{b} \\ \beta \end{pmatrix} \sin(\tau) \quad \text{and} \quad \tilde{b} = \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} \tilde{a} \\ 0 \\ \alpha \end{pmatrix} (-\sin(\tau))+\begin{pmatrix} 0 \\ \tilde{b} \\ \beta \end{pmatrix} \cos(\tau) \quad \text{and} \quad \tilde{f} = \begin{pmatrix} f_x \\ f_y \\ f_z \end{pmatrix} = e \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}.$$

Here we added two missing coordinates α and β (they will be needed later on).

Let $\xi \equiv f_x/\tilde{a}$ and $\eta \equiv f_y/\tilde{b}$, then $e=\sqrt{\xi^2+\eta^2}$. Combining the 1$^{\text{st}}$ and 3$^{\text{rd}}$ eqn. above gives $\cos(\tau) = \xi/e$ and $\sin(\tau) = \eta/e$, i.e. $\tau = \arctan(\eta/\xi)$. Inserting above we obtain

$$\tilde{a} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} = \begin{pmatrix} \tilde{a} \xi/e \\ \tilde{b} \eta/e \\ a_z \end{pmatrix} \quad \text{and} \quad \tilde{b} = \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} -\tilde{a} \eta/e \\ \tilde{b} \xi/e \\ b_z \end{pmatrix} \quad \text{and} \quad \tilde{f} = \begin{pmatrix} f_x \\ f_y \\ f_z \end{pmatrix} = \begin{pmatrix} \tilde{a} \xi \\ \tilde{b} \eta \\ f_z e \end{pmatrix}.$$

The two main axes are perpendicular to each other: $0=\tilde{a} \cdot \tilde{b} = a_x b_z-(\tilde{a}^2-\tilde{b}^2)\xi \eta/e^2$, and therefore $a_x b_z=(\tilde{a}^2-\tilde{b}^2)\xi \eta/e^2(*)$.

Now set $A=(a_x^2+a_y^2)/(1-e^2)$ and $B=(b_x^2+b_y^2)$ and $S=-(a_x b_x+a_y b_y)\sqrt{1-e^2}$, or, in terms of known quantities, $A=(\tilde{a}^2\xi^2+\tilde{b}^2\eta^2)/(1-e^2)$ and $B=(\tilde{a}^2\eta^2+\tilde{b}^2\xi^2)/e^2$ and $S=(\tilde{a}^2-\tilde{b}^2)\xi \eta \sqrt{1-e^2}/e^2$.

Eqn. (*) becomes $a_x b_z \sqrt{1-e^2}=S$. With $b^2=a^2(1-e^2)=A+a_x^2(1-e^2)$ and $b^2=B+b_x^2$, we obtain after squaring a biquadratic eqn. for b: $|b^2-A||b^2-B|=S^2$.

The solution is $b=\sqrt{(A+B)+\sqrt{(A-B)^2+4S^2}}$ and then follows $a=b \div \sqrt{1-e^2}$.

The biquadratic eqn. for b_z is $|b_z^2-A+B|^2=S^2$.

The solution is $b_z=\pm \sqrt{(A-B)+\sqrt{(A-B)^2+4S^2}}$ and then follows $a_z=S \div (b_z \sqrt{1-e^2})$.

The plane of the ellipse \tilde{E} intersects the x,y-plane in an axis d going through O and forming an angle ϕ (or ellipse angle t_d) with the x-axis. E can be flipped into the x,y-plane with a rotation by an angle i around d.

The area of E is $\pi a b$, and the area of \tilde{E} is $\pi \tilde{a} \tilde{b}$. The ratio of the two areas is $(\tilde{a}\tilde{b}) / (a b) = \cos i$, i.e. $i=\arccos((\tilde{a}\tilde{b}) / (a b))$.

To determine the axis of rotation we need α and β. Comparing the 4 eqn.s for \tilde{a} and \tilde{b} we find

$$\begin{aligned} a_x &= \frac{1}{e} \left(\frac{\xi}{\eta} \right) \frac{\alpha}{\beta} \xi \\ b_z &= \frac{1}{e} \left(\frac{\xi}{\eta} \right) \frac{\alpha}{\beta} \frac{\eta}{\xi} \\ \alpha &= \frac{1}{e} \left(\frac{\xi}{\eta} \right) \frac{\alpha}{\beta} \xi \\ \beta &= \frac{1}{e} \left(\frac{\xi}{\eta} \right) \frac{\alpha}{\beta} \eta \end{aligned}$$

The two lines of this eqn. written separately are $\alpha=(\xi a_z-\eta b_z)/e$ and $\beta=(\eta a_z+\xi b_z)/e$.

The first of the two points $d \cap \tilde{E}$ has the z-coordinate $\alpha \cos(t_d)+\beta \sin(t_d)=0$, so $\tan(t_d)=-\alpha/\beta$.

Therefore $\cos(t_d)=\frac{\beta}{\sqrt{\alpha^2+\beta^2}}$ and $\sin(t_d)=\frac{-\alpha}{\sqrt{\alpha^2+\beta^2}}$.

The two points $d \cap E$ are now $\pm (\tilde{a} \cos(t_d), \tilde{b} \sin(t_d),0)$ or $\pm (\tilde{a} \beta, -\tilde{b} \alpha, 0) \div \sqrt{\alpha^2+\beta^2}$.
The angle between the axis of rotation d and the x-axis is given by \(\tan \phi = -\left(\frac{\hat{b} \alpha}{\hat{a} \beta} \right) \).

Therefore \(\cos \phi = \frac{\hat{a} \beta}{\sqrt{\hat{a}^2 + \hat{b}^2}} \) and \(\sin \phi = \frac{-\hat{b} \alpha}{\sqrt{\hat{a}^2 + \hat{b}^2}} \).

The x,y-part of the transformation that flips the ellipse E upright is

\[
\begin{pmatrix}
 x' \\
 y'
\end{pmatrix} = \begin{pmatrix}
 \cos \phi & -\sin \phi \\
 \sin \phi & \cos \phi
\end{pmatrix} \begin{pmatrix}
 1 & 0 \\
 0 & \cos^{-1} \phi
\end{pmatrix} \begin{pmatrix}
 \cos \phi & -\sin \phi \\
 \sin \phi & \cos \phi
\end{pmatrix} \begin{pmatrix}
 x \\
 y
\end{pmatrix} + \begin{pmatrix}
 1 & 0 \\
 0 & -1
\end{pmatrix} \begin{pmatrix}
 \sin \phi & -\sin \phi \cos \phi \\
 -\sin \phi \cos \phi & \cos^2 \phi
\end{pmatrix} \begin{pmatrix}
 x \\
 y
\end{pmatrix}.
\]

Using the previous formulas, one can write this as

\[
\begin{pmatrix}
 x' \\
 y'
\end{pmatrix} = \begin{pmatrix}
 x \\
 y
\end{pmatrix} + \frac{ab}{\sqrt{\hat{a}^2 + \hat{b}^2}} \begin{pmatrix}
 \hat{b}/\hat{a} & \hat{a}/\hat{b} \\
 \hat{a}/\hat{b} & \hat{b}/\hat{a}
\end{pmatrix} \begin{pmatrix}
 x \\
 y
\end{pmatrix}.
\]

Pictures of Alpha Centauri AB:

Figure 1a&b: α Centauri A (left) and B (right).

2015-05-04, taken with VisAO / MagAO / University of Arizona. https://visao.as.arizona.edu/wp-content/uploads/2015/05/magao_visual.jpg

Analysis for Alpha Centauri AB:

Figure 2a: The projected ellipse of α Centauri AB is reconstructed from 4 star positions in the years 2000.5:2015 (star B is moving FLTR).*

$d = 4.37 \text{ ly}$, $T = 79.9 \text{ a}$, $\hat{a} = 16.02''$, $\hat{b} = 3.07''$, $f_x = +5.67''$, $f_y = +1.13''$

*Based on a figure from en.wikipedia.org/wiki/Alpha_Centauri.

Unfortunately the 4 star positions are not measured, but calculated from orbital parameters.

Figure 2b: The upright ellipse.

My analysis: $a = 17.43''$, $b = 14.99''$, $e = 0.511$, $i = 79.15^\circ$, $M = 1.999 \text{ M(Sun)}$.

English wikipedia: $a = 17.57''$, $b = 15.03''$, $e = 0.518$, $i = 79.20^\circ$, $M = 2.007 \text{ M(Sun)}$.
clear
T=79.9; d=4.37; at=16.02; bt=3.07; fx=5.67; fy=1.13;
t=0:710; t=t/113; x=at*cos(t); y=bt*sin(t);

% projected ellipse
figure(1);clf;
plot(x,y,'k','linewidth',1,fx,fy,'ko');hold on;
plot([-at,at],[0,0],'-','linewidth',1,[-bt,bt],'-','linewidth',1);

% projected main axes
xi=fx/at;eta=fy/bt; e=sqrt(xi^2+eta^2);
ax=fx/e;ay=fy/e; bx=-eta*at/e;by=xi*bt/e;
plot([-ax,ax],[-ay,ay],'r-','linewidth',1,-[bx,bx],[-by,by],'b-','linewidth',1)
hold off; axis([-1 1 -1 1]*20);axis equal;
title(['at=' num2str(at) ', bt=' num2str(bt) ',f_x=' num2str(fx) ', f_y=' num2str(fy) '.'])

% main axes and missing z-coordinates
A=((at*xi)^2+(bt*eta)^2)*(1-e^2)/e^2;
B=((-eta*at)^2+(xi*bt)^2)/e^2;
S=(at^2-bt^2)*xi*eta*sqrt(1-e^2)/e^2;
b=sqrt((A+B)/2+sqrt((A-B)^2/4+S^2));a=b/sqrt(1-e^2);
bz=sqrt((A-B)/2+sqrt((A-B)^2/4+S^2)); az=S/sqrt(1-e^2)/bz;
ci=at*bt/a/id=acos(ci)*180/pi;
alp=(xi*az-eta*bz)/e;bet=(eta*az+xi*bz)/e;

% upright ellipse
xp=x+(a*b-at*bt)/(bt^2*alp^2+at^2*bet^2)*alp*(bt/at*alp*x+alp*y);
yp=y+(a*b-at*bt)/(bt^2*alp^2+at^2*bet^2)*bet*(alp*x+at/bt*bet*y);

figure(2);clf;
plot(xp,yp,'k','linewidth',1,fxp,fyp,'ro');hold on;
plot([-axp,axp],[-ayp,ayp],'-','linewidth',1,-[bxp,bxp],[-byp,byp],'-','linewidth',1)
plot(x,y,'-',...,'linewidth',1,'color',[1 1 1])*0.5);
plot(fx,fx,'o','markeredgecolor',[1 0.5 0.5]);
plot([-ax,ax],[-ay,ay],'-','linewidth',1,'color',[0.5 0.5 1]);
hold off; axis([-1 1 -1 1]*20);axis equal;
title(['at=' num2str(at) ', bt=' num2str(bt) ', a=' num2str(a) ', b=' num2str(b) '.'])

% numerical analysis
display(['a = ' num2str(a) ', b = ' num2str(b) ', e = ' num2str(e) ', i = ' num2str(id)]); display(['d = ' num2str(d) ' ly, M/M(Sun) = ' num2str((d*63240*a*4.85E-6)^3/T^2) '.'])

% printing
figure(1); set(gcf,"paperposition",[0. 0. 5. 5.]); print gcf fig1.png;
figure(2); set(gcf,"paperposition",[0. 0. 5. 5.]); print gcf fig2.png;